Published in

Cambridge University Press, Epidemiology and Infection, (150), 2022

DOI: 10.1017/s0950268822001157

Links

Tools

Export citation

Search in Google Scholar

Epidemiology of repeat influenza infection in Queensland, Australia, 2005–2017

Journal article published in 2022 by Olivia Price ORCID, Frances A. Birrell, Edin J. Mifsud, Sheena G. Sullivan
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Natural infection with the influenza virus is believed to generate cross-protective immunity across both types and subtypes. However, less is known about the persistence of this immunity and thus the susceptibility of individuals to repeat infection. We used 13 years (2005–2017) of surveillance data from Queensland, Australia, to describe the incidence and distribution of repeat influenza infections. Consecutive infections that occurred within 14 days of prior infection were considered a mixed infection; those that occurred more than 14 days later were considered separate (repeat) infections. Kaplan-Meier plots were used to investigate the probability of reinfection over time and the Prentice, Williams and Peterson extension of the Cox proportional hazards model was used to assess the association of age and gender with reinfection. Among the 188 392 notifications received during 2005–2017, 6165 were consecutively notified for the same individual (3.3% of notifications), and 2958 were mixed infections (1.6%). Overall, the probability of reinfection was low: the cumulative incidence was <1% after one year, 4.6% after five years, and 9.6% after ten years. The majority of consecutive infections were the result of two type A infections (43%) and were most common among females (adjusted hazard ratio (aHR): 1.15, 95% confidence interval (CI) 1.09–1.21), children aged less than 5 years (relative to adults aged 18–64 years aHR: 1.58, 95% CI 1.47–1.70) and older adults aged at least 65 years (aHR: 1.35; 95% CI 1.24–1.47). Our study suggests consecutive infections are possible but rare. These findings have implications for our understanding of population immunity to influenza.