Published in

Young Cho Chung, Psychiatry Investigation, 12(20), p. 1195-1203, 2023

DOI: 10.30773/pi.2023.0052

Links

Tools

Export citation

Search in Google Scholar

A Case-Control Clinical Trial on a Deep Learning-Based Classification System for Diagnosis of Amyloid-Positive Alzheimer’s Disease

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Objective A deep learning-based classification system (DLCS) which uses structural brain magnetic resonance imaging (MRI) to diagnose Alzheimer’s disease (AD) was developed in a previous recent study. Here, we evaluate its performance by conducting a single-center, case-control clinical trial.Methods We retrospectively collected T1-weighted brain MRI scans of subjects who had an accompanying measure of amyloid-beta (Aβ) positivity based on a 18F-florbetaben positron emission tomography scan. The dataset included 188 Aβ-positive patients with mild cognitive impairment or dementia due to AD, and 162 Aβ-negative controls with normal cognition. We calculated the sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUC) of the DLCS in the classification of Aβ-positive AD patients from Aβ-negative controls.Results The DLCS showed excellent performance, with sensitivity, specificity, positive predictive value, negative predictive value, and AUC of 85.6% (95% confidence interval [CI], 79.8–90.0), 90.1% (95% CI, 84.5–94.2), 91.0% (95% CI, 86.3–94.1), 84.4% (95% CI, 79.2–88.5), and 0.937 (95% CI, 0.911–0.963), respectively.Conclusion The DLCS shows promise in clinical settings where it could be routinely applied to MRI scans regardless of original scan purpose to improve the early detection of AD.