Published in

Springer, Contributions to Mineralogy and Petrology, 3(177), 2022

DOI: 10.1007/s00410-022-01904-x

Links

Tools

Export citation

Search in Google Scholar

Eoarchean subduction-like magmatism recorded in 3750 Ma mafic–ultramafic rocks of the Ukaliq supracrustal belt (Québec)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractOur understanding of the nature of crustal formation in the Eoarchean is limited by the scarcity and poor preservation of the oldest rocks and variable and imperfect preservation of protolith magmatic signatures. These limitations hamper our ability to place quantitative constraints on thermomechanical models for early crustal genesis and hence on the operative geodynamic regimes at that time. The recently discovered ca. 3.75 Ga Ukaliq supracrustal enclave (northern Québec) is mainly composed of variably deformed and compositionally diverse serpentinized ultramafic rocks and amphibolitized mafic schists whose metamorphic peak, inferred from phase equilibria modeling, was below 720 °C. Inferred protoliths to the Ukaliq ultramafic rocks include cumulative dunites, pyroxenites, and gabbros, whereas the mafic rocks were probably picrites, basalts, and basaltic andesites. The bulk-rock and mineral chemistry documents the partial preservation of cumulative pyroxenes and probably amphiboles and demonstrates the occurrence of a clinopyroxene-dominated, tholeiitic suite and an orthopyroxene-dominated, boninite-like suite. Together with the presence of negative μ142Nd anomalies in the boninitic basalts, two liquid lines of descent are inferred: (i) a damp tholeiitic sequence resulting from the fractionation of a basaltic liquid produced by mantle decompression; and (ii) a boninitic suite documenting the evolution of an initially primitive basaltic andesite liquid produced by flux melting. Petrographic observations, thermodynamic modeling, bulk-rock and mineral chemistry, and 142Nd isotopic compositions identify the Ukaliq supracrustal belt as the remnant of an Eoarchean arc crust produced by the recycling of Hadean crust in a similar way as modern-style subduction.