Dissemin is shutting down on January 1st, 2025

Published in

SpringerOpen, Nano-Micro Letters, 1(16), 2023

DOI: 10.1007/s40820-023-01219-x

Links

Tools

Export citation

Search in Google Scholar

A Stable Open-Shell Conjugated Diradical Polymer with Ultra-High Photothermal Conversion Efficiency for NIR-II Photo-Immunotherapy of Metastatic Tumor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMassive efforts have been concentrated on the advance of eminent near-infrared (NIR) photothermal materials (PTMs) in the NIR-II window (1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-II-responsive organic PTMs was explored, and their photothermal conversion efficiencies (PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-II window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-II absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-II light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-II window, without any side-effect. Moreover, by combining with PD-1 antibody, the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-II window, offering a new horizon in developing radical-characteristic NIR-II photothermal materials.