Published in

Nature Research, Communications Chemistry, 1(6), 2023

DOI: 10.1038/s42004-023-00934-1

Links

Tools

Export citation

Search in Google Scholar

Symmetry breaking in core-valence double ionisation of allene

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractConventional electron spectroscopy is an established one-electron-at-the-time method for revealing the electronic structure and dynamics of either valence or inner shell ionized systems. By combining an electron-electron coincidence technique with the use of soft X-radiation we have measured a double ionisation spectrum of the allene molecule in which one electron is removed from a C1s core orbital and one from a valence orbital, well beyond Siegbahns Electron-Spectroscopy-for-Chemical-Analysis method. This core-valence double ionisation spectrum shows the effect of symmetry breaking in an extraordinary way, when the core electron is ejected from one of the two outer carbon atoms. To explain the spectrum we present a new theoretical approach combining the benefits of a full self-consistent field approach with those of perturbation methods and multi-configurational techniques, thus establishing a powerful tool to reveal molecular orbital symmetry breaking on such an organic molecule, going beyond Löwdins standard definition of electron correlation.