Published in

American Society of Mechanical Engineers, Journal of Engineering for Gas Turbines and Power, 11(145), 2023

DOI: 10.1115/1.4063309

Links

Tools

Export citation

Search in Google Scholar

Computational Fluid Dynamics Analysis and Experimental Results for the Dynamic Performance of Two Long Smooth Surface Annular Seals Operating With a Liquid in Air Mixture

Journal article published in 2023 by Jing Yang, Dung L. Tran, Luis San Andrés
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Compressors in subsea oil and gas production must handle wet gases to reliably operate for extended periods of time. Annular clearance seals contribute to compressor performance and do affect system rotordynamic stability. Prior experimental work with two smooth surfaces, uniform clearance seals supplied with a light oil in air mixture and undergoing similar operating conditions produced direct stiffnesses (K) with distinct trends as the liquid content increased to 8% in volume. Both seals differ in length and diameter albeit having similar radial clearance. Other force coefficients for both seals, namely, cross-coupled stiffness (k) and direct damping (C) increase as the inlet liquid volume fraction (LVF) grows. Rationale for the peculiar differences in centering stiffness (K) is missing. Hence, a computational fluid dynamics (CFD) model and its predictions, the thrust of this paper, unveil flow field details (pressure, velocity fields, and liquid content evolution) for the oil in air mixture. Besides the CFD model, an enhanced bulk-flow model (BFM) also predicts the seals' leakage and dynamic force coefficients. Both models predict through flows agreeing well with the measured ones, the maximum difference is less than 16%. The BFM direct stiffness (K) does reproduce closely the experimental K whereas the direct damping coefficient (C) is up to ∼41% lower than the test result. The CFD model captures the variation trend of K versus inlet LVF for the first seal, albeit its magnitude is thrice the experimental stiffness. The CFD C agrees well with the test data for both seals, the largest difference is less than 10%. In spite of the complexity of the CFD model, significant differences with the experimental results persist, in particular for K. When considering the seal inlet corner as round, the CFD model produces a significant reduction in K to better approach the test result for a seal supplied with air. Attention to the seal geometry is paramount to produce accurate predictions.