Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Birds, 1(5), p. 48-66, 2024

DOI: 10.3390/birds5010004

Links

Tools

Export citation

Search in Google Scholar

Identifying and Counting Avian Blood Cells in Whole Slide Images via Deep Learning

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Avian blood analysis is a fundamental method for investigating a wide range of topics concerning individual birds and populations of birds. Determining precise blood cell counts helps researchers gain insights into the health condition of birds. For example, the ratio of heterophils to lymphocytes (H/L ratio) is a well-established index for comparing relative stress load. However, such measurements are currently often obtained manually by human experts. In this article, we present a novel approach to automatically quantify avian red and white blood cells in whole slide images. Our approach is based on two deep neural network models. The first model determines image regions that are suitable for counting blood cells, and the second model is an instance segmentation model that detects the cells in the determined image regions. The region selection model achieves up to 97.3% in terms of F1 score (i.e., the harmonic mean of precision and recall), and the instance segmentation model achieves up to 90.7% in terms of mean average precision. Our approach helps ornithologists acquire hematological data from avian blood smears more precisely and efficiently.