Published in

Wiley Open Access, Brain and Behavior, 8(12), 2022

DOI: 10.1002/brb3.2707

Links

Tools

Export citation

Search in Google Scholar

Structural disconnectome mapping of cognitive function in poststroke patients

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractBackground and purposeSequalae following stroke represents a significant challenge in current rehabilitation. The location and size of focal lesions are only moderately predictive of the diverse cognitive outcome after stroke. One explanation building on recent work on brain networks proposes that the cognitive consequences of focal lesions are caused by damages to anatomically distributed brain networks supporting cognition rather than specific lesion locations.MethodsTo investigate the association between poststroke structural disconnectivity and cognitive performance, we estimated individual level whole‐brain disconnectivity probability maps based on lesion maps from 102 stroke patients using normative data from healthy controls. Cognitive performance was assessed in the whole sample using Montreal Cognitive Assessment, and a more comprehensive computerized test protocol was performed on a subset (n = 82).ResultsMultivariate analysis using Partial Least Squares on the disconnectome maps revealed that higher disconnectivity in right insular and frontal operculum, superior temporal gyrus and putamen was associated with poorer MoCA performance, indicating that lesions in regions connected with these brain regions are more likely to cause cognitive impairment. Furthermore, our results indicated that disconnectivity within these clusters was associated with poorer performance across multiple cognitive domains.ConclusionsThese findings demonstrate that the extent and distribution of structural disconnectivity following stroke are sensitive to cognitive deficits and may provide important clinical information predicting poststroke cognitive sequalae.