Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Addiction, 1(119), p. 113-124, 2023

DOI: 10.1111/add.16330

Links

Tools

Export citation

Search in Google Scholar

Brain structural covariance network features are robust markers of early heavy alcohol use

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBackground and AimsRecently, we demonstrated that a distinct pattern of structural covariance networks (SCN) from magnetic resonance imaging (MRI)‐derived measurements of brain cortical thickness characterized young adults with alcohol use disorder (AUD) and predicted current and future problematic drinking in adolescents relative to controls. Here, we establish the robustness and value of SCN for identifying heavy alcohol users in three additional independent studies.Design and SettingCross‐sectional and longitudinal studies using data from the Pediatric Imaging, Neurocognition and Genetics (PING) study (n = 400, age range = 14–22 years), the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) (n = 272, age range = 17–22 years) and the Human Connectome Project (HCP) (n = 375, age range = 22–37 years).CasesCases were defined based on heavy alcohol use patterns or former alcohol use disorder (AUD) diagnoses: 50, 68 and 61 cases were identified. Controls had none or low alcohol use or absence of AUD: 350, 204 and 314 controls were selected.MeasurementsGraph theory metrics of segregation and integration were used to summarize SCN.FindingsMirroring our prior findings, and across the three data sets, cases had a lower clustering coefficient [area under the curve (AUC) = −0.029, P = 0.002], lower modularity (AUC = −0.14, P = 0.004), lower average shortest path length (AUC = −0.078, P = 0.017) and higher global efficiency (AUC = 0.007, P = 0.010). Local efficiency differences were marginal (AUC = −0.017, P = 0.052). That is, cases exhibited lower network segregation and higher integration, suggesting that adjacent nodes (i.e. brain regions) were less similar in thickness whereas spatially distant nodes were more similar.ConclusionStructural covariance network (SCN) differences in the brain appear to constitute an early marker of heavy alcohol use in three new data sets and, more generally, demonstrate the utility of SCN‐derived metrics to detect brain‐related psychopathology.