Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 48(120), 2023

DOI: 10.1073/pnas.2314408120

Links

Tools

Export citation

Search in Google Scholar

Chemical and spatial dual-confinement engineering for stable Na-S batteries with approximately 100% capacity retention

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sodium-sulfur (Na-S) batteries are attracting intensive attention due to the merits like high energy and low cost, while the poor stability of sulfur cathode limits the further development. Here, we report a chemical and spatial dual-confinement approach to improve the stability of Na-S batteries. It refers to covalently bond sulfur to carbon at forms of C-S/N-C=S bonds with high strength for locking sulfur. Meanwhile, sulfur is examined to be S 1 -S 2 small species produced by thermally cutting S 8 large molecules followed by sealing in the confined pores of carbon materials. Hence, the sulfur cathode achieves a good stability of maintaining a high-capacity retention of 97.64% after 1000 cycles. Experimental and theoretical results show that Na + is hosted via a coordination structure (N···Na···S) without breaking the C-S bond, thus impeding the formation and dissolution of sodium polysulfide to ensure a good cycling stability. This work provides a promising method for addressing the S-triggered stability problem of Na-S batteries and other S-based batteries.