Published in

American Society of Clinical Oncology, JCO Clinical Cancer Informatics, 7, 2023

DOI: 10.1200/cci.23.00070

Links

Tools

Export citation

Search in Google Scholar

Fixing the Leaky Pipe: How to Improve the Uptake of Patient-Reported Outcomes–Based Prognostic and Predictive Models in Cancer Clinical Practice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

PURPOSE This discussion paper outlines challenges and proposes solutions for successfully implementing prediction models that incorporate patient-reported outcomes (PROs) in cancer practice. METHODS We organized a full-day multidisciplinary meeting of people with expertise in cancer care delivery, PRO collection, PRO use in prediction modeling, computing, implementation, and decision science. The discussions presented here focused on identifying challenges to the development, implementation and use of prediction models incorporating PROs, and suggesting possible solutions. RESULTS Specific challenges and solutions were identified across three broad areas. (1) Understanding decision making and implementation: necessitating multidisciplinary collaboration in the early stages and throughout; early stakeholder engagement to define the decision problem and ensure acceptability of PROs in prediction; understanding patient/clinician interpretation of PRO predictions and uncertainty to optimize prediction impact; striving for model integration into existing electronic health records; and early regulatory alignment. (2) Recognizing the limitations to PRO collection and their impact on prediction: incorporating validated, clinically important PROs to maximize model generalizability and clinical engagement; and minimizing missing PRO data (resulting from both structural digital exclusion and time-varying factors) to avoid exacerbating existing inequalities. (3) Statistical and modeling challenges: incorporating statistical methods to address missing data; ensuring predictive modeling recognizes complex causal relationships; and considering temporal and geographic recalibration so that model predictions reflect the relevant population. CONCLUSION Developing and implementing PRO-based prediction models in cancer care requires extensive multidisciplinary working from the earliest stages, recognition of implementation challenges because of PRO collection and model presentation, and robust statistical methods to manage missing data, causality, and calibration. Prediction models incorporating PROs should be viewed as complex interventions, with their development and impact assessment carried out to reflect this.