Published in

Springer Nature [academic journals on nature.com], Molecular Psychiatry, 2023

DOI: 10.1038/s41380-023-02357-9

Links

Tools

Export citation

Search in Google Scholar

Validation of plasma protein glycation and oxidation biomarkers for the diagnosis of autism

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAutism Spectrum Disorder (ASD) is a common neurodevelopmental disorder in children. It is currently diagnosed by behaviour-based assessments made by observation and interview. In 2018 we reported a discovery study of a blood biomarker diagnostic test for ASD based on a combination of four plasma protein glycation and oxidation adducts. The test had 88% accuracy in children 5–12 years old. Herein, we present an international multicenter clinical validation study (N = 478) with application of similar biomarkers to a wider age range of 1.5–12 years old children. Three hundred and eleven children with ASD (247 male, 64 female; age 5.2 ± 3.0 years) and 167 children with typical development (94 male, 73 female; 4.9 ± 2.4 years) were recruited for this study at Sidra Medicine and Hamad Medical Corporation hospitals, Qatar, and Hospital Regional Universitario de Málaga, Spain. For subjects 5–12 years old, the diagnostic algorithm with features, advanced glycation endproducts (AGEs)—Nε-carboxymethyl-lysine (CML), Nω-carboxymethylarginine (CMA) and 3-deoxyglucosone-derived hydroimidazolone (3DG-H), and oxidative damage marker, o,o’-dityrosine (DT), age and gender had accuracy 83% (CI 79 – 89%), sensitivity 94% (CI 90–98%), specificity 67% (CI 57–76%) and area-under-the-curve of receiver operating characteristic plot (AUROC) 0.87 (CI 0.84–0.90). Inclusion of additional plasma protein glycation and oxidation adducts increased the specificity to 74%. An algorithm with 12 plasma protein glycation and oxidation adduct features was optimum for children of 1.5–12 years old: accuracy 74% (CI 70–79%), sensitivity 75% (CI 63–87%), specificity 74% (CI 58–90%) and AUROC 0.79 (CI 0.74–0.84). We conclude that ASD diagnosis may be supported using an algorithm with features of plasma protein CML, CMA, 3DG-H and DT in 5–12 years-old children, and an algorithm with additional features applicable for ASD screening in younger children. ASD severity, as assessed by ADOS-2 score, correlated positively with plasma protein glycation adducts derived from methylglyoxal, hydroimidazolone MG-H1 and Nε(1-carboxyethyl)lysine (CEL). The successful validation herein may indicate that the algorithm modifiable features are mechanistic risk markers linking ASD to increased lipid peroxidation, neuronal plasticity and proteotoxic stress.