Published in

MDPI, Processes, 9(10), p. 1863, 2022

DOI: 10.3390/pr10091863

Links

Tools

Export citation

Search in Google Scholar

Failure Risk Assessment of Coal Gasifier Based on the Integration of Bayesian Network and Trapezoidal Intuitionistic Fuzzy Number-Based Similarity Aggregation Method (TpIFN-SAM)

Journal article published in 2022 by Yunpeng Liu, Shen Wang, Qian Liu, Dongpeng Liu, Yang Yang, Yong Dan, Wei Wu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The coal gasifier is the core unit of the coal gasification system. Due to its exposure to high temperatures, high pressures, and aggressive media, it is highly susceptible to serious accidents in the event of failure. Therefore, it is important for the gasifier to perform failure-risk assessment to understand its safety status and provide safety measures. Bayesian networks (BNs) for risk analysis of process systems has received a lot of attention due to its powerful inference capability and its ability to reflect complex relationships between risk factors. However, the acquisition of basic probability data in a Bayesian network is always a great challenge. In this study, an improved Bayesian network integrated with a trapezoidal intuitionistic fuzzy number-based similarity aggregation method (TpIFN-SAM) is proposed for the failure-risk assessment of process systems. This approach used the TpIFN-SAM to collect and aggregate experts’ opinions for obtaining the prior probabilities of the root events in the BN. In the TpIFN-SAM, the intuitionistic fuzzy analytic-hierarchy-process method (IF-AHP) was adopted to assign the expert weights for reducing subjectivity or the bias caused by individual differences. To clarify the suitability of the proposed method, a case study of a coal gasifier was demonstrated, and both prediction and diagnosis analyses of the BN were performed; finally, the weak links of the gasifier were identified.