Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nanomaterials, 10(11), p. 2692, 2021

DOI: 10.3390/nano11102692

Links

Tools

Export citation

Search in Google Scholar

Strain Effects on the Electronic and Optical Properties of Kesterite Cu2ZnGeX4 (X = S, Se): First-Principles Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Following the chronological stages of calculations imposed by the WIEN2K code, we have performed a series of density functional theory calculations, from which we were able to study the effect of strain on the kesterite structures for two quaternary semiconductor compounds Cu2ZnGeS4 and Cu2ZnGeSe4. Remarkable changes were found in the electronic and optical properties of these two materials during the application of biaxial strain. Indeed, the band gap energy of both materials decreases from the equilibrium state, and the applied strain is more pronounced. The main optical features are also related to the applied strain. Notably, we found that the energies of the peaks present in the dielectric function spectra are slightly shifted towards low energies with strain, leading to significant refraction and extinction index responses. The obtained results can be used to reinforce the candidature of Cu2ZnGeX4(X = S, Se) in the field of photovoltaic devices.