Published in

EDP Sciences, Astronomy & Astrophysics, (667), p. L2, 2022

DOI: 10.1051/0004-6361/202244169

Links

Tools

Export citation

Search in Google Scholar

Evidence of a signature of planet formation processes from solar neutrino fluxes

Journal article published in 2022 by Masanobu Kunitomo ORCID, Tristan Guillot ORCID, Gaël Buldgen ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Solar evolutionary models are thus far unable to reproduce spectroscopic, helioseismic, and neutrino constraints consistently, resulting in the so-called solar modeling problem. In parallel, planet formation models predict that the evolving composition of the protosolar disk and, thus, of the gas accreted by the proto-Sun must have been variable. We show that solar evolutionary models that include a realistic planet formation scenario lead to an increased core metallicity of up to 5%, implying that accurate neutrino flux measurements are sensitive to the initial stages of the formation of the Solar System. Models with homogeneous accretion match neutrino constraints to no better than 2.7σ. In contrast, accretion with a variable composition due to planet formation processes, leading to metal-poor accretion of the last ∼4% of the young Sun’s total mass, yields solar models within 1.3σ of all neutrino constraints. We thus demonstrate that in addition to increased opacities at the base of the convective envelope, the formation history of the Solar System constitutes a key element in resolving the current crisis of solar models.