Published in

Life Science Alliance, Life Science Alliance, 1(7), p. e202302205, 2023

DOI: 10.26508/lsa.202302205

Links

Tools

Export citation

Search in Google Scholar

NRF2 connects Src tyrosine kinase to ferroptosis resistance in glioblastoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Glioblastoma is a severe brain tumor characterized by an extremely poor survival rate of patients. Glioblastoma cancer cells escape to standard therapeutic protocols consisting of a combination of ionizing radiation and temozolomide alkylating drugs that trigger DNA damage by rewiring of signaling pathways. In recent years, the up-regulation of factors that counteract ferroptosis has been highlighted as a major driver of cancer resistance to ionizing radiation, although the molecular connection between the activation of oncogenic signaling and the modulation of ferroptosis has not been clarified yet. Here, we provide the first evidence for a molecular connection between the constitutive activation of tyrosine kinases and resistance to ferroptosis. Src tyrosine kinase, a central hub on which deregulated receptor tyrosine kinase signaling converge in cancer, leads to the stabilization and activation of NRF2 pathway, thus promoting resistance to ionizing radiation-induced ferroptosis. These data suggest that the up-regulation of the Src–NRF2 axis may represent a vulnerability for combined strategies that, by targeting ferroptosis resistance, enhance radiation sensitivity in glioblastoma.