Published in

Journal of Pharmaceutical Research International, p. 268-280, 2021

DOI: 10.9734/jpri/2021/v33i55a33832

Links

Tools

Export citation

Search in Google Scholar

Investigation of the Influence of the Molecular Weight of Polyethyleneglycols on the Optical Properties and Dispersed Characteristics of Sols of Au Nanoparticles used in Medicine

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, the synthesis of Au nanoparticles stabilized with polyethyleneglycols with different molecular weights from 200 to 8000 Da was carried out. The synthesis was carried out by the method of chemical reduction in an aqueous medium using sodium citrate as a reducing agent. The dependence of the optical properties on the concentration and molar mass of polyethyleneglycol was studied in the obtained samples of Au nanoparticles. The absorption spectra were recorded using an SF-56 optical spectrometer. The studies were carried out in the visible range of the spectrum from 400 to 800 nm. It was found that the type of spectrum, the position of the surface plasmon resonance band and the optical density of the samples of Au nanoparticles stabilized with PEG-8000 with a concentration of 10 and 20% did not undergo significant changes during storage, which characterizes the high aggregate stability of these sols. The dispersed characteristics of these samples of sols of Au nanoparticles were also studied. The studies were carried out using photon-correlation spectroscopy by the method of dynamic light scattering. It is established that an increase in the concentration of the stabilizer leads to an increase in the average hydrodynamic radius of the particles. This fact is associated with an increase in the thickness of the stabilizer layer and with the "stitching" of the polymer layer of Au nanoparticles with the formation of aggregates. Thus, the best result was found in PEG-8000 samples with concentrations of 10 and 20%, since the type of spectrum, the position of the surface plasmon resonance band and the optical density did not undergo significant changes. Based on the data obtained, it can be concluded that the best stabilizer for Au nanoparticles obtained by the citrate method is PEG-8000 with a concentration of at least 10 %. It is important to note that with an increase in the concentration of the stabilizer, the average hydrodynamic radius of the particles increases. This fact is associated with an increase in the thickness of the stabilizer layer and with the "stitching" of Au nanoparticles.