Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Communications Biology, 1(6), 2023

DOI: 10.1038/s42003-023-04477-y

Links

Tools

Export citation

Search in Google Scholar

Accuracy of haplotype estimation and whole genome imputation affects complex trait analyses in complex biobanks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSample recruitment for research consortia, biobanks, and personal genomics companies span years, necessitating genotyping in batches, using different technologies. As marker content on genotyping arrays varies, integrating such datasets is non-trivial and its impact on haplotype estimation (phasing) and whole genome imputation, necessary steps for complex trait analysis, remains under-evaluated. Using the iPSYCH dataset, comprising 130,438 individuals, genotyped in two stages, on different arrays, we evaluated phasing and imputation performance across multiple phasing methods and data integration protocols. While phasing accuracy varied by choice of method and data integration protocol, imputation accuracy varied mostly between data integration protocols. We demonstrate an attenuation in imputation accuracy within samples of non-European origin, highlighting challenges to studying complex traits in diverse populations. Finally, imputation errors can bias association tests, reduce predictive utility of polygenic scores. Carefully optimized data integration strategies enhance accuracy and replicability of complex trait analyses in complex biobanks.