Published in

Wiley, Journal of the American Ceramic Society, 12(106), p. 7449-7459, 2023

DOI: 10.1111/jace.19347

Links

Tools

Export citation

Search in Google Scholar

Mg and Al mixed effects on thermal properties in aluminosilicate glasses

Journal article published in 2023 by Xuefei Ke, Xiaowei Wang, Yadan Wang, Xiaoming Ren, Haizheng Tao ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBy using the aerodynamic levitation and laser melting technique to well extend the glass‐forming region into the Mg‐rich and peraluminous regime, a series of magnesium aluminosilicate glasses were prepared to investigate the Mg and Al mixed effects on thermal properties, including glass transition temperature (Tg), crystallization behavior, and thermal stability. With the gradual substitution of Mg by Al, Tg exhibits two types of near‐linear rises with different slopes in two compositional regions separated by r = 0.57, where r is equal to the molar ratio of [Al2O3]/([Al2O3] + [MgO]). Moreover, when it comes to other properties, that is, crystallization behavior and thermal stability, this critical point precisely appears at the same r = 0.57. Compared to the slower increase of Tg in Mg‐rich region, the steeper rise of Tg in the peraluminous region is mainly ascribed to the step‐by‐step formation of oxygen triclusters driven by Pauling's second rule. Moreover, the occurrence of the critical point for Tg rise at r = 0.57 rather than the theoretical 0.5 can be seen as a proof of the role of Mg cations partly as a network former.