Published in

Wiley, Advanced Materials, 16(35), 2023

DOI: 10.1002/adma.202208561

Links

Tools

Export citation

Search in Google Scholar

All‐Printed Roll‐to‐Roll Perovskite Photovoltaics Enabled by Solution‐Processed Carbon Electrode

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPerovskite photovoltaics have shown great promise in device efficiency but also the promise of scalability through solution‐processed manufacture. Efforts to scale perovskites have been taken through printable mesoporous scaffolds and slot die coating of flexible substrates roll‐to‐roll (R2R). However, to date there has been no demonstration of entirely R2R‐coated devices due to the lack of a compatible solution‐processable back electrode; instead, high‐value evaporated metal contacts are employed as a post process. Here, in this study, the combination of a low‐temperature device structure and R2R‐compatible solution formulations is employed to make a fully R2R printable device architecture overcoming interlayer incompatibilities and recombination losses. Therefore, the n–i–p device structure of SnO2/perovskite/poly(3,4‐ethylenedioxythiophene)/carbon is employed to form an ohmic contact between a p‐type semiconductor and printable carbon electrode. In particular, the results show that the small‐scale device efficiencies of 13–14% are achieved, matching the device performance of evaporated gold electrodes. Also, this entirely R2R‐coated perovskite prototype represents a game changer, reaching over 10% (10.8) stabilized power conversion efficiency with unencapsulated long‐term stability retaining 84% of its original efficiency over 1000 h under 70% RH and 25 °C.