Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Vaccines, 3(11), p. 612, 2023

DOI: 10.3390/vaccines11030612

Links

Tools

Export citation

Search in Google Scholar

Characterization of Live-Attenuated Powassan Virus Vaccine Candidates Identifies an Efficacious Prime-Boost Strategy for Mitigating Powassan Virus Disease in a Murine Model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Powassan virus (POWV) is an emerging tick-borne virus and cause of lethal encephalitis in humans. The lack of treatment or prevention strategies for POWV disease underscores the need for an effective POWV vaccine. Here, we took two independent approaches to develop vaccine candidates. First, we recoded the POWV genome to increase the dinucleotide frequencies of CpG and UpA to potentially attenuate the virus by raising its susceptibility to host innate immune factors, such as the zinc-finger antiviral protein (ZAP). Secondly, we took advantage of the live-attenuated yellow fever virus vaccine 17D strain (YFV-17D) as a vector to express the structural genes pre-membrane (prM) and envelope (E) of POWV. The chimeric YFV-17D-POWV vaccine candidate was further attenuated for in vivo application by removing an N-linked glycosylation site within the nonstructural protein (NS)1 of YFV-17D. This live-attenuated chimeric vaccine candidate significantly protected mice from POWV disease, conferring a 70% survival rate after lethal challenge when administered in a homologous two-dose regimen. Importantly, when given in a heterologous prime-boost vaccination scheme, in which vaccination with the initial chimeric virus was followed by a protein boost with the envelope protein domain III (EDIII), 100% of the mice were protected without showing any signs of morbidity. Combinations of this live-attenuated chimeric YFV-17D-POWV vaccine candidate with an EDIII protein boost warrant further studies for the development of an effective vaccine strategy for the prevention of POWV disease.