Dissemin is shutting down on January 1st, 2025

Published in

Springer, European Child and Adolescent Psychiatry, 11(32), p. 2187-2195, 2022

DOI: 10.1007/s00787-022-02064-w

Links

Tools

Export citation

Search in Google Scholar

Red blood cell omega-3 fatty acids and attention scores in healthy adolescents

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractOmega-3 fatty acids are critical for brain function. Adolescence is increasingly believed to entail brain vulnerability to dietary intake. In contrast to the abundant research on the omega-3 docosahexaenoic acid (DHA) in cognition, research on DHA and attention in healthy adolescents is scarce. In addition, the role of alpha-linolenic acid (ALA), the vegetable omega-3 fatty acid, is unexplored. We examined associations between DHA and ALA and attention function among a healthy young population. In this cross-sectional study conducted in 372 adolescents (13.8 ± 0.9 years-old), we determined the red blood cell proportions of DHA and ALA by gas chromatography (objective biomarkers of their long-term dietary intake) and measured attention scores through the Attention Network Test. We constructed multivariable linear regression models to analyze associations, controlling for known confounders. Compared to participants at the lowest DHA tertile (reference), those at the highest DHA tertile showed significantly lower hit reaction time-standard error (higher attentiveness) (28.13 ms, 95% confidence interval [CI] = – 52.30; – 3.97), lower hit reaction time ( – 38.30 ms, 95% CI = – 73.28; – 3.33) and lower executive conflict response ( – 5.77 ms, 95% CI = – 11.44; – 0.09). In contrast, higher values were observed in those at the top tertile of ALA in hit reaction time compared to the lowest one (46.14 ms, 95% CI = 9.90; 82.34). However, a beneficial association was observed for ALA, with decreasing impulsivity index across tertiles. Overall, our results suggest that DHA (reflecting its dietary intake) is associated with attention performance in typically developing adolescents. The role of dietary ALA in attention is less clear, although higher blood levels of ALA appear to result in lower impulsivity. Future intervention studies are needed to determine the causality of these associations and to better shape dietary recommendations for brain health during the adolescence period.