Published in

American Heart Association, Arteriosclerosis, Thrombosis, and Vascular Biology, 7(43), p. 1081-1092, 2023

DOI: 10.1161/atvbaha.122.317963

Links

Tools

Export citation

Search in Google Scholar

New Approaches for Targeting PCSK9: Small-Interfering Ribonucleic Acid and Genome Editing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

There is overwhelming clinical and genetic evidence supporting the concept that low-density-lipoprotein cholesterol should be as low as possible for as long as possible in patients at very high cardiovascular risk. Despite the wide availability of effective lipid-lowering therapies, the majority of patients still fail to reach guideline-based lipid goals. Advances in novel approaches targeting PCSK9 (proprotein convertase subtilisin/kexin type 9) through small-interfering RNA and genome editing hold the potential to bridge this gap, by offering long-acting alternatives, which may overcome adherence and other challenges in the current chronic care model. In this review, we discuss the history of targeting PCSK9 with the use of mRNA and small-interfering ribonucleic acid. We also shed light on targeting PCSK9 with genome editing, including discussion of the VERVE-101 clustered regularly interspaced short palindromic repeats-base editing medicine currently being evaluated in a clinical trial and others in development.