Published in

American Geophysical Union, Geophysical Research Letters, 17(50), 2023

DOI: 10.1029/2023gl103836

Links

Tools

Export citation

Search in Google Scholar

Satellite Evidence of HONO/NO<sub>2</sub> Increase With Fire Radiative Power

Journal article published in 2023 by C. D. Fredrickson ORCID, N. Theys, J. A. Thornton ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractWildfires are important sources of atmospheric reactive nitrogen. The reactive nitrogen species partitioning generally depends on fire characteristics. One reactive nitrogen compound, nitrous acid (HONO), is a source of hydroxyl radicals and nitric oxide, which can impact the oxidizing capacity of the atmosphere and fire plume chemistry and composition. We study the Australian wildfire season of 2019–2020, known as Black Summer, where numerous large and intense wildfires burned throughout the continent. We use HONO and nitrogen dioxide (NO2) from the TROPOspheric Monitoring Instrument (TROPOMI) and fire radiative power (FRP) from the Visible Infrared Imaging Radiometer Suite to investigate HONO and NO2 relationships with fire characteristics. The ratio of HONO to NO2 increases linearly with FRP both in Australia and globally. Both Australian and global fire relationships depend strongly on land cover type. These relationships can be applied to emission inventories to improve wildfire emission representation in models.