Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Materials, 38(33), 2021

DOI: 10.1002/adma.202102034

Links

Tools

Export citation

Search in Google Scholar

Low‐Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries’ Lifetime

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe lithium metal anode (LMA) instability at deep cycle with high utilization is a crucial barrier for developing lithium (Li) metal batteries, resulting in excessive Li inventory and electrolyte demand. This issue becomes more severe in capacity‐type lithium–sulfur (Li–S) batteries. High‐concentration or localized high‐concentration electrolytes are noted as effective strategies to stabilize Li metal but usually lead to a high electrolyte density (>1.4 g mL−1). Here we propose a bifunctional fluorinated silane‐based electrolyte with a low density of 1.0 g mL−1 that not only is much lighter than conventional electrolytes (≈1.2 g mL−1) but also form a robust solid electrolyte interface to minimize Li depletion. Therefore, the Li loss rate is reduced over 4.5‐fold with the proposed electrolyte relative to its conventional counterpart. When paired with onefold excess LMA at the electrolyte weight/cell capacity (E/C) ratio of 4.5 g Ah−1, the Li–S pouch cell using our electrolyte can survive for 103 cycles, much longer than with the conventional electrolyte (38 cycles). This demonstrates that our electrolyte not only reduces the E/C ratio but also enhances the cyclic stability of Li–S batteries under limited Li amounts.