Published in

Nature Research, npj Computational Materials, 1(7), 2021

DOI: 10.1038/s41524-021-00665-8

Links

Tools

Export citation

Search in Google Scholar

Valley-filling instability and critical magnetic field for interaction-enhanced Zeeman response in doped WSe2 monolayers

Journal article published in 2021 by Fengyuan Xuan ORCID, Su Ying Quek ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCarrier-doped transition metal dichalcogenide (TMD) monolayers are of great interest in valleytronics due to the large Zeeman response (g-factors) in these spin-valley-locked materials, arising from many-body interactions. We develop an ab initio approach based on many-body perturbation theory to compute the interaction-enhanced g-factors in carrier-doped materials. We show that the g-factors of doped WSe2 monolayers are enhanced by screened-exchange interactions resulting from magnetic-field-induced changes in band occupancies. Our interaction-enhanced g-factors g* agree well with experiment. Unlike traditional valleytronic materials such as silicon, the enhancement in g-factor vanishes beyond a critical magnetic field Bc achievable in standard laboratories. We identify ranges of g* for which this change in g-factor at Bc leads to a valley-filling instability and Landau level alignment, which is important for the study of quantum phase transitions in doped TMDs. We further demonstrate how to tune the g-factors and optimize the valley-polarization for the valley Hall effect.