Published in

American Geophysical Union, Journal of Geophysical Research: Biogeosciences, 12(126), 2021

DOI: 10.1029/2021jg006573

Links

Tools

Export citation

Search in Google Scholar

Tidal and Nontidal Marsh Restoration: A Trade‐Off Between Carbon Sequestration, Methane Emissions, and Soil Accretion

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractSupport for coastal wetland restoration projects that consider carbon (C) storage as a climate mitigation benefit is growing as coastal wetlands are sites of substantial C sequestration. However, the climate footprint of wetland restoration remains controversial as wetlands can also be large sources of methane (CH4). We quantify the vertical fluxes of C in restored fresh and oligohaline nontidal wetlands with managed hydrology and a tidal euhaline marsh in California's San Francisco Bay‐Delta. We combine the use of eddy covariance atmospheric flux measurements with 210Pb‐derived soil C accumulation rates to quantify the C sequestration efficiency of restored wetlands and their associated climate mitigation service. Nontidal managed wetlands were the most efficient in burying C on‐site, with soil C accumulation rates as high as their net atmospheric C uptake (−280 ± 90 and −350 ± 150 g C m−2 yr−1). In contrast, the restored tidal wetland exhibited lower C burial rates over decadal timescales (70 ± 19 g C m−2 yr−1) that accounted for ∼13%–23% of its annual C uptake, suggesting that the remaining fraction is exported via lateral hydrologic flux. From an ecosystem radiative balance perspective, the restored tidal wetland showed a > 10 times higher CO2‐sequestration to CH4‐emission ratio than the nontidal managed wetlands. Thus overall, tidal wetland restoration resulted in a negative radiative forcing (cooling) through increased soil C accumulation, while nontidal wetland restoration led to an early positive forcing (warming) through increased CH4 emissions potentially lasting between 2.1 ± 2.0 to 8 ± 4 decades.