Published in

Oxford University Press, PNAS Nexus, 11(2), 2023

DOI: 10.1093/pnasnexus/pgad312

Links

Tools

Export citation

Search in Google Scholar

A missing jigsaw within the hygiene hypothesis: Low-dose bisphenol A exposure attenuates lipopolysaccharide-induced asthma protection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The rising occurrence of allergic asthma in early life across industrialized countries suggests that environmental factors play a crucial role in determining asthma susceptibility and severity. While prior exposure to microbial lipopolysaccharides (LPSs) has been found to offer protection against allergic asthma, infants residing in urban environments are increasingly exposed to environmental pollutants. Utilizing limulus lysate test screens and virtual screening models, we identified pollutants that can modulate LPS bioactivity. This investigation revealed that bisphenol A (BPA), a chemical commonly used in numerous household items and previously implicated in obesity and cancer, effectively neutralizes LPS. In-depth mechanistic analyses showed that BPA specifically binds to the lipid A component of LPS, leading to inactivation. This interaction eliminates the immunostimulatory activity of LPS, making mice more susceptible to house dust mite (HDM)-induced allergic asthma. BPA reactivates lung epithelial cells, consequently amplifying type 2 responses to HDMs in dendritic cells. This chemical interplay provides new insights into the pathophysiology of asthma in relation to human exposure. Understanding the intricate relationships between environmental chemicals and microbial antigens, as well as their impacts on innate immunity, is critical for the development of intervention strategies to address immune disorders resulting from urbanization.