Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(505), p. 3393-3403, 2021

DOI: 10.1093/mnras/stab1479

Links

Tools

Export citation

Search in Google Scholar

The varying kinematics of multiple ejecta from the black hole X-ray binary MAXI J1820 + 070

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT During a 2018 outburst, the black hole X-ray binary MAXI J1820 + 070 was comprehensively monitored at multiple wavelengths as it underwent a hard to soft state transition. During this transition, a rapid evolution in X-ray timing properties and a short-lived radio flare were observed, both of which were linked to the launching of bi-polar, long-lived relativistic ejecta. We provide a detailed analysis of two Very Long Baseline Array observations, using both time binning and a new dynamic phase centre tracking technique to mitigate the effects of smearing when observing fast-moving ejecta at high angular resolution. We identify a second, earlier ejection, with a lower proper motion of 18.0 ± 1.1 mas d−1. This new jet knot was ejected 4 ± 1 h before the beginning of the rise of the radio flare, and 2 ± 1 h before a switch from type-C to type-B X-ray quasi-periodic oscillations (QPOs). We show that this jet was ejected over a period of ∼6 h and thus its ejection was contemporaneous with the QPO transition. Our new technique locates the original, faster ejection in an observation in which it was previously undetected. With this detection, we revised the fits to the proper motions of the ejecta and calculated a jet inclination angle of (64 ± 5)°, and jet velocities of $0.97_{-0.09}^{+0.03}c$ for the fast-moving ejecta (Γ > 2.1) and (0.30 ± 0.05)c for the newly identified slow-moving ejection (Γ = 1.05 ± 0.02). We show that the approaching slow-moving component is predominantly responsible for the radio flare, and is likely linked to the switch from type-C to type-B QPOs, while no definitive signature of ejection was identified for the fast-moving ejecta.