Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Materials, 2023

DOI: 10.1002/adma.202305911

Links

Tools

Export citation

Search in Google Scholar

Direct 3D‐Bioprinting of hiPSC‐Derived Cardiomyocytes to Generate Functional Cardiac Tissues

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract3D‐bioprinting is a promising technology to produce human tissues as drug screening tool or for organ repair. However, direct printing of living cells has proven difficult. Here, a method is presented to directly 3D‐bioprint human induced pluripotent stem cell (hiPSC)‐derived cardiomyocytes embedded in a collagen–hyaluronic acid ink, generating centimeter‐sized functional ring‐ and ventricle‐shaped cardiac tissues in an accurate and reproducible manner. The printed tissues contain hiPSC‐derived cardiomyocytes with well‐organized sarcomeres and exhibit spontaneous and regular contractions, which persist for several months and are able to contract against passive resistance. Importantly, beating frequencies of the printed cardiac tissues can be modulated by pharmacological stimulation. This approach opens up new possibilities for generating complex functional cardiac tissues as models for advanced drug screening or as tissue grafts for organ repair or replacement.