Published in

Wiley, International Journal of Climatology, 4(42), p. 2019-2038, 2021

DOI: 10.1002/joc.7350

Links

Tools

Export citation

Search in Google Scholar

Evapotranspiration trends and variability in southeastern South America: The roles of land‐cover change and precipitation variability

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSoutheastern South America is subject to considerable precipitation variability on seasonal to decadal timescales and has undergone very heavy land‐cover changes (LCCs) since the middle of the past century. The influence of local LCC and precipitation as drivers of regional evapotranspiration (ET) long‐term trends and variability remains largely unknown in the region. Here, ensembles of stand‐alone dynamic global vegetation models (DGVMs) with different atmospheric forcings are used to disentangle the influence of those two drivers on austral summer ET from 1950 to 2010. This paper examines the influence of both the El Niño‐Southern Oscillation (ENSO) and the dipole‐like first‐mode of southeastern South American precipitation variability (EOF1) on regional ET. We found that in the lower La Plata Basin, ET was driven by precipitation variability and showed a positive summer trend. Moreover, the region showed marked seasonal anomalies during El Niño and La Niña summers but mainly during EOF1 phases. On the contrary, in the upper La Plata Basin, LCCs forced the negative summer ET trend and particularly reduced the summer anomalies of the late 1990s, a period of ENSO and EOF1‐positive phases. In the South Atlantic Convergence Zone region, the high ET uncertainty across ensemble members impeded finding robust results, which highlights the importance of using multiple DGVMs and atmospheric forcings instead of relying on single model/forcing results.