Published in

American Astronomical Society, Astronomical Journal, 3(166), p. 105, 2023

DOI: 10.3847/1538-3881/acea60

Links

Tools

Export citation

Search in Google Scholar

Stable Fiber-illumination for Extremely Precise Radial Velocities with NEID

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract NEID is a high-resolution red–optical precision radial velocity (RV) spectrograph recently commissioned at the WIYN 3.5 m telescope at Kitt Peak National Observatory, Arizona, USA. NEID has an extremely stable environmental control system, and spans a wavelength range of 380–930 nm with two observing modes: a High Resolution mode at R ∼ 112,000 for maximum RV precision, and a High Efficiency mode at R ∼ 72,000 for faint targets. In this paper we present a detailed description of the components of NEID’s optical fiber feed, which include the instrument, exposure meter, calibration system, and telescope fibers. Many parts of the optical fiber feed can lead to uncalibratable RV errors, which cannot be corrected for using a stable wavelength reference source. We show how these errors directly cascade down to performance requirements on the fiber feed and the scrambling system. We detail the design, assembly, and testing of each component. Designed and built from the bottom-up with a single-visit instrument precision requirement of 27 cm s−1, close attention is paid to the error contribution from each NEID subsystem. Finally, we include the lab and on-sky tests performed during instrument commissioning to test the illumination stability, and discuss the path to achieving the instrumental stability required to search for a true Earth twin around a solar-type star.