Published in

BioScientifica, Reproduction, 1(165), p. R9-R23, 2023

DOI: 10.1530/rep-22-0226

Links

Tools

Export citation

Search in Google Scholar

Repurposing existing drugs as a therapeutic approach for the prevention of preterm birth

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In brief Preterm birth is the leading cause of perinatal morbidity and mortality; however, current therapies offer limited efficacy to delay birth and improve neonatal outcomes. This review explores the potential of repurposing drugs with known safety profiles to quench uterine contractions and inflammation, identifying promising agents for clinical trials. Abstract Preterm birth is the leading cause of neonatal morbidity and mortality globally. Despite extensive research into the underlying pathophysiology, rates of preterm birth have not significantly reduced. Currently, preterm labour management is based on optimising neonatal outcomes. Treatment involves administering drugs (tocolytics) to suppress uterine contractions to allow sufficient time for transfer to an appropriate facility and administration of antenatal corticosteroids for fetal lung maturation. Current tocolytics are limited as they are associated with adverse maternal and fetal effects and only delay delivery for a short period. There has been a serious lack of therapeutic development for preterm birth, and new approaches to protect against or delay preterm birth are urgently needed. Repurposing drugs for the prevention of preterm birth presents as a promising approach by reducing the time and costs associated with pharmaceutical drug development. In this review, we explore the evidence for the potential of therapies, specifically proton pump inhibitors, tumour necrosis factor inhibitors, prostaglandin receptor antagonists, aspirin, and statins, to be repurposed as preventatives and/or treatments for preterm birth. Importantly, many of these innovative approaches being explored have good safety profiles in pregnancy. We also review how delivery of these drugs can be enhanced, either through targeted delivery systems or via combination therapy approaches. We aim to present innovative strategies capable of targeting multiple aspects of the complex pathophysiology that underlie preterm birth. There is an urgent unmet need for preterm birth therapeutic development, and these strategies hold great promise for improving neonatal outcomes.