Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Energy Materials, 22(13), 2023

DOI: 10.1002/aenm.202300177

Links

Tools

Export citation

Search in Google Scholar

Electronic and Lattice Engineering of Ruthenium Oxide towards Highly Active and Stable Water Splitting

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe development of efficiently active and stable bifunctional noble‐metal‐based electrocatalysts toward overall water splitting is urgent and challenging. In this work, a rutile‐structured ruthenium‐zinc solid solution oxide with oxygen vacancies (Ru0.85Zn0.15O2‐δ) is developed by a simple molten salt method. With naturally abundant edges of ultrasmall nanoparticles clusters, Ru0.85Zn0.15O2‐δ requires ultralow overpotentials, 190 mV for acidic oxygen evolution reaction (OER) and 14 mV for alkaline hydrogen evolution reaction (HER), to reach 10 mA cm−2. Moreover, it shows superior activity and durability for overall water splitting in different electrolytes. Experimental characterizations and density functional theory calculations indicate that the incorporation of Zn and oxygen vacancies can optimize the electronic structure of RuO2 by charge redistribution, which dramatically suppresses the generation of soluble Rux>4 and allows optimized adsorption energies of oxygen intermediates for OER. Meanwhile, the incorporation of Zn can distort local structure to activate the dangling O atoms on the distorted Ru0.85Zn0.15O2‐δ as proton acceptors, which firmly bonds the H atom in H2O* to stabilize the H2O and considerably improves the HER activity.