Published in

Wiley, Advanced Energy Materials, 30(12), 2022

DOI: 10.1002/aenm.202201109

Links

Tools

Export citation

Search in Google Scholar

Field Effect Passivation in Perovskite Solar Cells by a LiF Interlayer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe fullerene C60 is commonly applied as the electron transport layer in high‐efficiency metal halide perovskite solar cells and has been found to limit their open circuit voltage. Through ultra‐sensitive near‐UV photoelectron spectroscopy in constant final state mode (CFSYS), with an unusually high probing depth of 5–10 nm, the perovskite/C60 interface energetics and defect formation is investigated. It is demonstrated how to consistently determine the energy level alignment by CFSYS and avoid misinterpretations by accounting for the measurement‐induced surface photovoltage in photoactive layer stacks. The energetic offset between the perovskite valence band maximum and the C60 HOMO‐edge is directly determined to be 0.55 eV. Furthermore, the voltage enhancement upon the incorporation of a LiF interlayer at the interface can be attributed to originate from a mild dipole effect and probably the presence of fixed charges, both reducing the hole concentration in the vicinity of the perovskite/C60 interface. This yields a field effect passivation, which overcompensates the observed enhanced defect density in the first monolayers of C60.