Published in

Sociedade Brasileira de Química, SBQ, Journal of the Brazilian Chemical Society, 2023

DOI: 10.21577/0103-5053.20230062

Links

Tools

Export citation

Search in Google Scholar

Biogenic Silver Nanoparticles Capped with Proteins: Timed Knowledge and Perspectives

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Biogenic silver nanoparticles are synthesized through silver(I) reduction, which is promoted by biomolecules available in the biological world and mostly obtained from plant extracts, fungal bioproduction, and some bacteria. The exact mechanisms accounting for such oxidoreduction processes are not fully known. However, some studies have already mentioned oxidoreductases, cofactors (nicotinamide adenine dinucelotide hydrogen (NADH), dihydroflavine-adenine dinucleotid (FADH2)), and phenolic compounds, as the main reductive species engaged in the formation of silver(0) and silver nanoparticles (silver NPs) synthesis. Biosynthesis is a one-pot process that leads to stable silver NP colloids that, regarding their size, shape, and uniformity, can be successfully controlled; and show great stability when one takes into account their surface capping by some biomolecules that as well take part in their synthesis. Although great efforts have been made to feature capping biomolecules and their interactions with silver NP surfaces, knowledge of the quantity (exact number per cm2 ) and type of biomolecules that cap or surround silver NPs remains limited. The literature provides detailed information on protein capping, but it still shows gaps regarding many aspects of fine biophysical protein featuring. The reason why certain proteins prefer to interact with silver NP surface and form chemical bonds, whereas others rather have intermolecular interaction with the first layer of proteins remains unknown. Assessing capping proteins’ involvement in the bioactivity of biogenic silver NPs is another relevant research field. Certain proteins enhance bioactivity of silver NPs and lower toxicity; however, the way antimicrobial processes benefit from protein capping is yet to be discovered. Finally, biogenic silver NPs can be found both in the environment and in water; moreover, their additional activity and behavior must be known or, at least, hypothesized.