Published in

Wiley, Advanced Functional Materials, 2023

DOI: 10.1002/adfm.202309624

Links

Tools

Export citation

Search in Google Scholar

Nanofiber‐Interlocked V<sub>2</sub>CT<sub>x</sub> Hosts Enriched with 3D Lithiophilic and Sulfophilic Sites for Long‐Life and High‐Rate Lithium–Sulfur Batteries

Journal article published in 2023 by Qi Jin ORCID, LiRong Zhang, MingLi Zhao, Lu Li, XianBo Yu, JunPeng Xiao, Long Kong, XiTian Zhang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractLithium–sulfur batteries (LSBs) currently face challenges including lithium polysulfide shuttling, sluggish sulfur redox kinetics, severe lithium dendrite growth, and volume change. Herein, an advanced dual‐functional host is designed by embedding 3D N‐doped carbon fibers with abundant 2D V2CTx nanosheets (N/CF@V2CTx). The N‐doped carbon fibers act as “thread” to connect the V2CTx nanosheets and form a unique open 3D macroporous structure. This structure effectively prevents the restacking of the V2CTx nanosheets and exposes their lithiophilic and sulfurophilic sites. Consequently, the N/CF@V2CTx host effectively suppresses the shuttling of LiPSs and improves the cathodic kinetics. Furthermore, the 3D‐ordered porous skeleton integrated with abundant lithophilic sites enables uniform Li deposition and homogeneous Li‐ion flux, thereby inhibiting dendrite growth and mitigating volume expansion. The as‐assembled LSBs exhibit excellent rate capability (640 mAh g−1 at 15 C) and outstanding cycling stability (0.019% capacity decay per cycle throughout 1200 cycles at 1 C). Moreover, the pouch cell assembled with the N/CF@V2CTx host demonstrates a high energy density of 350 Wh kg−1 and good cycling stability. This research presents a promising approach to address the challenges of both the sulfur cathode and the lithium anode comprehensively and effectively in working LSBs.