Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Macromolecular Rapid Communications, 20(42), p. 2170067, 2021

DOI: 10.1002/marc.202170067

Wiley, Macromolecular Rapid Communications, 20(42), 2021

DOI: 10.1002/marc.202100397

Links

Tools

Export citation

Search in Google Scholar

Correlation of Thermoelectric Performance, Domain Morphology and Doping Level in PEDOT:PSS Thin Films Post‐Treated with Ionic Liquids

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIonic liquid (IL) post‐treatment of poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin films with ethyl‐3‐methylimidazolium dicyanamide (EMIM DCA), allyl‐3‐methylimidazolium dicyanamide (AMIM DCA), and 1‐ethyl‐3‐methylimidazolium tetracyanoborate (EMIM TCB) is compared. Doping level modifications of PEDOT are characterized using UV–Vis spectroscopy and directly correlate with the observed Seebeck coefficient enhancement. With conductive atomic force microscopy (c‐AFM) the authors investigate changes in the topographic‐current features of the PEDOT:PSS thin film surface due to IL treatment. Grazing incidence small‐angle X‐ray scattering (GISAXS) demonstrates the morphological rearrangement towards an optimized PEDOT domain distribution upon IL post‐treatment, directly facilitating the interconductivity and causing an increased film conductivity. Based on these improvements in Seebeck coefficient and conductivity, the power factor is increased up to 236 µW m−1K2. Subsequently, a model is developed indicating that ILs, which contain small, sterically unhindered ions with a strong localized charge, appear beneficial to boost the thermoelectric performance of post‐treated PEDOT:PSS films.