Published in

Springer, Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 3(140), 2021

DOI: 10.1007/s00214-021-02728-x

Links

Tools

Export citation

Search in Google Scholar

Electronic transitions in Rb2+ dimers solvated in helium

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe have measured depletion spectra of the heteronuclear (85Rb87Rb+) dimer cation complexed with up to 10 He atoms. Two absorption bands are observed between 920 and 250 nm. The transition into the repulsive 12Σu+state of HeRb2+gives rise to a broad feature at 790 nm (12,650 cm−1); it exhibits a blueshift of 98 cm−1per added He atom. The transition into the bound 12Πustate of HeRb2+reveals vibrational structure with a band head at ≤ 15,522 cm−1, a harmonic constant of 26 cm−1, and a spin–orbit splitting of ≤ 183 cm−1. The band experiences an average redshift of − 38 cm−1per added He atom. Ab initio calculations rationalize the shape of the spectra and spectral shifts with respect to the number of helium atoms attached. For a higher number of solvating helium atoms, symmetric solvation on both ends of the Rb2+ion is predicted.