Published in

Wiley, Advanced Functional Materials, 42(31), 2021

DOI: 10.1002/adfm.202103723

Links

Tools

Export citation

Search in Google Scholar

Metal–Organic Framework Nanosheets: Programmable 2D Materials for Catalysis, Sensing, Electronics, and Separation Applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Metal–organic framework nanosheets (MONs) have recently emerged as a distinct class of 2D materials with programmable structures that make them useful in diverse applications. In this review, the breadth of applications that have so far been investigated are surveyed, thanks to the distinct combination of properties afforded by MONs. How: 1) The high surface areas and readily accessible active sites of MONs mean they have been exploited for a variety of heterogeneous, photo‐, and electro‐catalytic applications; 2) their diverse surface chemistry and wide range of optical and electronic responses have been harnessed for the sensing of small molecules, biological molecules, and ions; 3) MONs tunable optoelectronic properties and nanoscopic dimensions have enabled them to be harnessed in light harvesting and emission, energy storage, and other electronic devices; 4) the anisotropic structure and porous nature of MONs mean they have shown great promise in a variety of gas separation and water purification applications; are discussed. The aim is to draw links between the uses of MONs in these different applications in order to highlight the common opportunities and challenges presented by this promising class of nanomaterials.