Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Coatings, 3(12), p. 358, 2022

DOI: 10.3390/coatings12030358

Links

Tools

Export citation

Search in Google Scholar

Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nanotechnology has transformed engineering designs across a wide spectrum of materials and applications. Mesoporous Silica Nanoparticles (MSNs) are one of the new fabrications of nanostructures as medication delivery systems. MSNs have pore sizes varying from 2 to 50 nm, making them ideal for a variety of biological applications. They offer unique characteristics such as a tunable surface area, well-defined surface properties, and the ability to improve drug pharmacokinetic characteristics. Moreover, they have the potential to reduce adverse effects by delivering a precise dose of medications to a specific spot rather than the more frequent systemic delivery, which diffuses across tissues and organs. In addition, the vast number of pores allow drug incorporation and transportation of drugs to various sites making MSNs a feasible platform for orally administered drugs. Though the oral route is the most suitable and convenient platform for drug delivery, conventional oral drug delivery systems are associated with several limitations. Surpassing gastrointestinal barriers and the low oral bioavailability of poorly soluble medicines pose a major challenge in the pharmaceutical industry. This review provides insights into the role of MSNs and its mechanism as an oral drug delivery system.