Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Global Ecology and Biogeography, 9(32), p. 1591-1606, 2023

DOI: 10.1111/geb.13721

Links

Tools

Export citation

Search in Google Scholar

Compositional shifts of alpine plant communities across the high Andes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAimClimate change is transforming mountain summit plant communities worldwide, but we know little about such changes in the High Andes. Understanding large‐scale patterns of vegetation changes across the Andes, and the factors driving these changes, is fundamental to predicting the effects of global warming. We assessed trends in vegetation cover, species richness (SR) and community‐level thermal niches (CTN) and tested whether they are explained by summits' climatic conditions and soil temperature trends.LocationHigh Andes.Time periodBetween 2011/2012 and 2017/2019.Major taxa studiedVascular plants.MethodsUsing permanent vegetation plots placed on 45 mountain summits and soil temperature loggers situated along a ~6800 km N‐S gradient, we measured species and their relative percentage cover and estimated CTN in two surveys (intervals between 5 and 8 years). We then estimated the annual rate of changes for the three variables and used generalized linear models to assess their relationship with annual precipitation, the minimum air temperatures of each summit and rates of change in the locally recorded soil temperatures.ResultsOver time, there was an average loss of vegetation cover (mean = −0.26%/yr), and a gain in SR across summits (mean = 0.38 species m2/yr), but most summits had significant increases in SR and vegetation cover. Changes in SR were positively related to minimum air temperature and soil temperature rate of change. Most plant communities experienced shifts in their composition by including greater abundances of species with broader thermal niches and higher optima. However, the measured changes in soil temperature did not explain the observed changes in CTN.Main conclusionsHigh Andean vegetation is changing in cover and SR and is shifting towards species with wider thermal niche breadths. The weak relationship with soil temperature trends could have resulted from the short study period that only marginally captures changes in vegetation through time.