Published in

SpringerOpen, Nano Convergence, 1(9), 2022

DOI: 10.1186/s40580-022-00344-4

Links

Tools

Export citation

Search in Google Scholar

On the switching dynamics of epitaxial ferroelectric CeO2–HfO2 thin film capacitors

Journal article published in 2022 by Felix Cüppers ORCID, Koji Hirai, Hiroshi Funakubo
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractEpitaxial layers of ferroelectric orthorhombic HfO2 are frequently investigated as model systems for industrially more relevant polycrystalline films. The recent success in stabilizing the orthorhombic phase in the solid-solution cerium oxide – hafnium oxide system allows detailed investigations of external influences during fabrication. This report analyzes the ferroelectric properties of two thin film capacitors, which were post-deposition annealed in N2 and O2 atmospheres to achieve the orthorhombic phase after room temperature deposition. The samples, which exhibit very similar constituent phase, appear identical in conventional polarization-field hysteresis measurements. However, a significant switching speed difference is observed in pristine devices. Continued field cycling reduces the difference. Deeper analysis of switching transients based on the Nucleation Limited Switching model suggests that the O2 heat treatment atmosphere results in an altered oxygen vacancy profile, which is reverted during ferroelectric cycling.