Published in

American Institute of Physics, Applied Physics Letters, 17(122), 2023

DOI: 10.1063/5.0146374

Links

Tools

Export citation

Search in Google Scholar

Dynamics of hybrid magnetic skyrmion driven by spin–orbit torque in ferrimagnets

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Precise control of skyrmion dynamics is essential for the future spintronic device design based on the magnetic skyrmions. In this work, we propose a scheme to implement hybrid magnetic skyrmions (HMS) in ferrimagnets and we study the dynamics of the HMS driven by spin–orbit torque. It is revealed that the skyrmion Hall effect depends on the skyrmion helicity and the net angular momentum (δs), allowing the effective modulation of the HMS motion through tuning Dzyaloshinskii–Moriya interaction and δs. Moreover, the Magnus force for finite δs suppresses the transverse motion and enhances the longitudinal propagation, resulting in the decrease in Hall angle accompanying faster dynamics than that in antiferromagnets. Thus, the Hall effect can be suppressed through selecting suitable materials to better control the HMS motion. Finally, we propose a convenient skyrmion diversion scheme through modulating the helicity and Hall angle of the HMS, benefiting the future spintronic device design.