Dissemin is shutting down on January 1st, 2025

Published in

Springer, Current Microbiology, 4(78), p. 1344-1357, 2021

DOI: 10.1007/s00284-021-02394-z

Links

Tools

Export citation

Search in Google Scholar

Improvement of Medicago sativa Crops Productivity by the Co-inoculation of Sinorhizobium meliloti–Actinobacteria Under Salt Stress

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBiotic and abiotic stresses are severely limiting plant production and productivity. Of notable importance is salt stress that not only limits plant growth and survival, but affects the soil fertility and threatens agricultural ecosystems sustainability. The problem is exacerbated in fragile arid and semi-arid areas where high evaporation, low precipitation and the use of salty water for irrigation is accelerating soil salinization. Legumes, considered very nutritious foods for people and providing essential nutrients for ecosystems are a fundamental element of sustainable agriculture. They can restore soil health by their ability to fix nitrogen in a symbiotic interaction with the rhizobia of the soil. However, salt stress is severely limiting productivity and nitrogen fixation ability in legumes. Plant growth-promoting rhizobacteria (PGPR) and mainly actinobacteria promote plant growth by producing phytohormones, siderophores, antibiotics and antifungal compounds, solubilizing phosphate and providing antagonism to phytopathogenic microorganisms. In addition, actinobacteria have beneficial effects on nodulation and growth of legumes. In this study, actinobacteria isolated from different niches and having PGP activities were used in co-inoculation experiments with rhizobia in Medicago sativa plants rhizosphere submitted to salt stress. The results indicate that drought- and salinity-tolerant Actinobacteria with multiple PGP traits can potentially increase alfalfa growth under saline conditions, in the presence or absence of symbiotic rhizobial bacteria. Actinobacteria discovered in this study can, therefore, be suitable biofertilizers in the formulation of agricultural products improving plant development, health and productivity in saline soils, a necessary alternative for modern agriculture and sustainable development.