Published in

Nature Research, Communications Chemistry, 1(6), 2023

DOI: 10.1038/s42004-023-00854-0

Links

Tools

Export citation

Search in Google Scholar

Key factors for connecting silver-based icosahedral superatoms by vertex sharing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMetal nanoclusters composed of noble elements such as gold (Au) or silver (Ag) are regarded as superatoms. In recent years, the understanding of the materials composed of superatoms, which are often called superatomic molecules, has gradually progressed for Au-based materials. However, there is still little information on Ag-based superatomic molecules. In the present study, we synthesise two di-superatomic molecules with Ag as the main constituent element and reveal the three essential conditions for the formation and isolation of a superatomic molecule comprising two Ag13−xMx structures (M = Ag or other metal; x = number of M) connected by vertex sharing. The effects of the central atom and the type of bridging halogen on the electronic structure of the resulting superatomic molecule are also clarified in detail. These findings are expected to provide clear design guidelines for the creation of superatomic molecules with various properties and functions.