Published in

American Association for the Advancement of Science, Research, (2021), 2021

DOI: 10.34133/2021/9820502

Links

Tools

Export citation

Search in Google Scholar

A Smarter Pavlovian Dog with Optically Modulated Associative Learning in an Organic Ferroelectric Neuromem

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Associative learning is a critical learning principle uniting discrete ideas and percepts to improve individuals’ adaptability. However, enabling high tunability of the association processes as in biological counterparts and thus integration of multiple signals from the environment, ideally in a single device, is challenging. Here, we fabricate an organic ferroelectric neuromem capable of monadically implementing optically modulated associative learning. This approach couples the photogating effect at the interface with ferroelectric polarization switching, enabling highly tunable optical modulation of charge carriers. Our device acts as a smarter Pavlovian dog exhibiting adjustable associative learning with the training cycles tuned from thirteen to two. In particular, we obtain a large output difference (>10 3 ), which is very similar to the all-or-nothing biological sensory/motor neuron spiking with decrementless conduction. As proof-of-concept demonstrations, photoferroelectric coupling-based applications in cryptography and logic gates are achieved in a single device, indicating compatibility with biological and digital data processing.