Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Molecules, 1(28), p. 453, 2023

DOI: 10.3390/molecules28010453

Links

Tools

Export citation

Search in Google Scholar

A New Approach to the Synthesis of Nanocrystalline Cobalt Boride in the Course of the Thermal Decomposition of Cobalt Complexes [Co(DMF)6]2+ with Boron Cluster Anions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In the course of the study, nanocrystalline cobalt monoboride was prepared by thermal decomposition of precursors [Co(DMF)6][An], where [An] = [B12H12]2− (1), [trans-B20H18]2− (2) or [B10Cl10]2− (3) in an argon atmosphere. Three new salt-like compounds 1–3 were prepared when Co(NO3)2 was allowed to react with (Et3NH)2[An]. Compound 1 is new; the structures of compounds 2 and 3 have been previously reported. Samples 1–3 were annealed at 900 °C in argon to form samples 1a–3a, which were characterized by single crystal XRD for 1 and powder XRD for 1–3. Powder XRD on the products showed the formation of BN and CoB for 1a in a 1:1 ratio; 2a gave a higher CoB:BN ratio but an overall decreased crystallinity. For 3a, only CoB was found. IR spectra of samples 1a–3a as well as X-ray spectral fluorescence analysis for 3a confirmed these results. The nanoparticular character of the decomposition products 1a–3a was shown using TEM; quite small particle sizes of about 10–15 nm and a quite normal size distribution were found for 1a and 2a, while the decomposition of 3 gave large particles with 200–350 nm and a broad distribution.