Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 18(21), p. 6105, 2021

DOI: 10.3390/s21186105

Links

Tools

Export citation

Search in Google Scholar

Mitigating Wireless Channel Impairments in Seismic Data Transmission Using Deep Neural Networks

Journal article published in 2021 by Naveed Iqbal ORCID, Abdulmajid Lawal, Azzedine Zerguine
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The traditional cable-based geophone network is an inefficient way of seismic data transmission owing to the related cost and weight. The future of oil and gas exploration technology demands large-scale seismic acquisition, versatility, flexibility, scalability, and automation. On the one hand, a typical seismic survey can pile up a massive amount of raw seismic data per day. On the other hand, the need for wireless seismic data transmission remains immense. Moving from pre-wired to wireless geophones faces major challenges given the enormous amount of data that needs to be transmitted from geophones to the on-site data collection center. The most important factor that has been ignored in the previous studies for the realization of wireless seismic data transmission is wireless channel effects. While transmitting the seismic data wirelessly, impairments like interference, multi-path fading, and channel noise need to be considered. Therefore, in this work, a novel amalgamation of blind channel identification and deep neural networks is proposed. As a geophone already is responsible for transmitting a tremendous amount of data under tight timing constraints, the proposed setup eschews sending any additional training signals for the purpose of mitigating the channel effects. Note that the deep neural network is trained only on synthetic seismic data without the need to use real data in the training process. Experiments show that the proposed method gives promising results when applied to the real/field data set.