Published in

MDPI, Polymers, 6(14), p. 1125, 2022

DOI: 10.3390/polym14061125

Links

Tools

Export citation

Search in Google Scholar

Bioactive Low Molecular Weight Keratin Hydrolysates for Improving Skin Wound Healing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Keratin biomaterials with high molecular weights were intensively investigated but few are marketed due to complex methods of extraction and preparation and limited understanding of their influence on cells behavior. In this context the aim of this research was to elucidate decisive molecular factors for skin homeostasis restoration induced by two low molecular weight keratin hydrolysates extracted and conditioned through a simple and green method. Two keratin hydrolysates with molecular weights of 3758 and 12,400 Da were physico-chemically characterized and their structure was assessed by circular dichroism (CD) and FTIR spectroscopy in view of bioactive potential identification. Other investigations were focused on several molecular factors: α1, α2 and β1 integrin mediated signals, cell cycle progression in pro-inflammatory conditions (TNFα/LPS stimulated keratinocytes and fibroblasts) and ICAM-1/VCAM-1 inhibition in human vascular endothelial cells. Flow cytometry techniques demonstrated a distinctive pattern of efficacy: keratin hydrolysates over-expressed α1 and α2 subunits, responsible for tight bounds between fibroblasts and collagen or laminin 1; both actives stimulated the epidermal turn-over and inhibited VCAM over-expression in pro-inflammatory conditions associated with bacterial infections. Our results offer mechanistic insights in wound healing signaling factors modulated by the two low molecular weight keratin hydrolysates which still preserve bioactive secondary structure.